Select Currency
Translate this page

EFFECTS OF SALT WATER ON CONCRETE

Format: MS WORD  |  Chapter: 1-5  |  Pages: 82  |  2142 Users found this project useful  |  Price NGN5,000

  DOWNLOAD THE COMPLETE PROJECT

EFFECTS OF SALT WATER ON CONCRETE

 

ABSTRACT

This project is carried out to know the effects of salt water on concrete. Salt water has salinity of about 3.5%. in that, about 78% is sodium chloride and 15% is chloride and sulphate of magnesium. The result gotten from the experiment being carried out shows different result from the mix design, casting, curing and crushing of different dates of each cubes. The compressive strength of each cube was also determined e.g. for the compressive strength of mix design 1.2.2:4 for both salt water and fresh water for different days such 7,14,21,28 days are "for fresh water" 26.0N/mm2, 33.1N/mm2, 3.8.4N/mm2, 4/06N/mm2 "for salt water" for different days such as 7, 14, 21, 28days which results are 25.9N/mm2, 28.3N/mm2, 36.3N/mm2, 38.9N/m. For compressive strength of Design Ratio "1:1:5:3:3" for different days such as "7, 14, 21 and 28 days respectively which are “43.3N/mm2, 47.7N/mm2, 48.4N/mm2, 47.3N/mm2 for fresh water and that of salt water are as follows, 42.1N/mm2, 44.9N/mm2, 46.3N/mm2, 47.26N/mm2. For mix design ratio "1:3:3:5:8" we have their compressive strength to be 16.3N/mm2, 21.8N/mm2, 25.03N/mm2, 29.6N/mm2 for each respective days for fresh water and that of salt water to be 16.2N/mm2, 20.3N/mm2, 23.57N/mm2, 27.6N/mm2, which also helps in the plotting of the graph of compressive strength against the curing days, to determine the strength of each cube. 

 

CHAPTER ONE

INTRODUCTION

1.1 WHAT IS CONCRETE 

Concrete is an artificial engineering material made from a mixture of Portland cement, water, fine and course aggregates, and a small amount of air. It is the most widely used construction material in the world. Concrete is the only major building material that can be delivered to the job site in a plastic state. this unique quality makes concrete desirable as a building material because it can be molded to virtually any form or shape. Concrete provides a wide latitude in surface textures and colours and can be used to construct a wide variety of structures, such as highways, and streets, bridges, dams, barge buildings, airport runways, irrigation structures, breakwaters, piers and docks, sidewalks, soles and farm buildings, homes and even barges and ships.Other desirable qualities of concrete as a building material are its strength, economy, and durability. Depending on the mixture of material used, concrete will support, in compression, 700 or more kg/sq cm (10,000 or more 1b/sq in). the ensile strength of concrete is much lower, but by using properly designed still reinforcing, structural members can be made that are as strong in tension as they are in compression.

The durability of concrete is evidenced by the fact that concrete columns built by the Egyptians more than 3000 years ago are still standing.  There are however, many different types of concrete, the names of some are distinguished by the types, sizes and densities of aggregates e.g. eight weight, normal weight or heavy weight. Concrete are similar in composition to mortar, which are used to bond unit masonry. Mortars however, are normally made with sand as a hole aggregates. Whereas, concrete contain much larger aggregates and this usually have greater strength. As a result, concrete have a much wider range of structural application, including pavements, footings, pipes, unit majoring, walls, dams and tanks. Because ordinary concrete is much weaker in tension than in compression, it is usually prestressed or reinforced with a much stronger material, such as steel, to resort tension.

There are various methods employed for carting ordering concrete. For very small projects, sacks of prepared mixes may be purchased and mixed on the site with water, usually a drem-type, portable, mechanical mixer. For large projects, mix ingredient are weighed separately and deposited in a stationary batch mixer or a continuous mixer. Concrete mixed or agitated in a truck is called ready mixed concrete. In general, concrete is placed and consolidation is forms by hand tamping or pudding around reinforcing steel or by spreading at or near vertical surface. Another technique vibration or mechanical pudding, which is the most satisfactory one for achieving proper consolidation.

CONSTITUENT OF CONCRETE

The two major components of concretes are cement parts and inert materials. The cement parts consists of Portland cement, water, and some air either in the form of naturally entrapped air voids or minute, intentionally entrained air bubbles. The inert materials are usually composed of fire aggregate, which is a material such as sand, and course aggregate, which is a material such as gravel, crushed stone, or slag. In general, fire aggregate particular are smaller than 6.4mm (.25mm) in size, and course aggregates a particles are large than 6.4mm (.025mm). Depending on the thickness of structure to be built, the size is used, when Portland cement is mixed with water, the components of the cement react to form a cementing medium. In properly mixed concrete, each particles of sand and course aggregates is completely surrounded and coated by this paste, and all spaces between the particular are filled with it. As the cement part sets and hardens, it binds the aggregates into a solid mass. Under normal conditions, concrete grows stronger as it grows older. The chemical reactions between cement and water that cause the parts to harden and bind the aggregates together require time. The reactions take place very rapidly at first and then slowly over a long period of time.

1.2 SALT WATER (SEA WATER)

Sea water has a salinity of about 3.5%. in that about 78% is sodium chloride and 15% is chloride and sulphate of magnesium. Sea water also contain small quantities of sodium and potassium salts. This can react with reactive aggregates in the same manner as alkalizes in cement. Therefore, sea water should not be used even for Pcc if aggregates are known to be potentially alkalie reactive. It is reported that the use of sea water for mixing concrete does not appreciately reduce the strength of concrete although it may lead to corrosion of reinforcement in certain cases. Research workers are unanimous in their opinion, that sea water can be used in un-reinforced concrete or mass concrete sea water slightly accelerates the early strength of concrete. But it reduces the 28day strength of concrete by about 10 to 15  percent. However, this loss of strength could be made up by redesigning the mix. Water containing large quantities of chlorides in sea water may cause efflorescence and persistent dampness. When the appearance of concrete is important, sea water may be avoided. Granite, limestone, sand stone, or basaltic rock are crushed for use principally as concrete aggregate or road stone.

ADVANTAGES OF CONCRETE

Under normal conditions, concrete grows stronger as it grows older. It is the most widely used material (construction) in the world, because it is the only major building material that can be delivered to the job site in a plastic state. Concrete can be molded into different form or shape due to its unique quality. Other qualities of concrete as a building material are its strength, durability, and economy, depending on the mixture of material used. Concrete provides a wide latitude in surface texture and colours and can be used to construct a wide variety of structures, such as highways and street bridges, dams, large buildings, airport runways, irrigation structures, breakwaters, piers and docks, sidewalks, silos and farm buildings, home and even barges and ships.

DISADVANTAGES OF CONCRETE

• Ordinary concrete are much weaker in tension, than in compression.

• Concrete is a bottle material and presses very low tensile strength, limiting ductility and little resistance to cracking

• Internal micro cracks as inherent present in the concrete and its poor tensile strength propagates such micro cracks and eventually leading to bottle failure of concrete.

• Concrete containing micro silica is vulnerable to plastic shrinkage, cracking and therefore, sheet or mat curing should be considered.

1.3 OBJECTIVES AND PURPOSE OF STUDY

The purpose of the study is to know the adverse negative effect the water (salt) may have on concrete.  Water is an important ingredient of concrete as it actively participates in the chemical reaction with cement. Since it helps to form the strength giving cement gal, the quantity and quality of water is required to be looked into very carefully. Sea water has a salinity of about 3.5percent, in that , about 78% is sodium chloride and 15% is chloride and sulphate of magnesium. It is said that the use of salt water (sea) for mixing concrete does not appreciably reduce the strength of concrete through it may lead to corrosion of reinforcement in certain cases. The aim of the experiment is to prove whether or not, if the sea water can reduce the strength of concrete.

1.4 SCOPE AND LIMITATION OF STUDY 

A popular yard-stick to the suitability of water for mixing concrete is that, if water is fit for drinking, it is fit for making concrete. This does not appear to be a true statement for all conditions. Some water containing imparities may be suitable for other purpose, but not for the mixture of concrete. Some specification requires that if the water is not obtained from source that has proven satisfactory, the strength of concrete or mortar made with questionable water should be compared with similar concrete or mortar made with pure water. Sea water has a salinity of about 3.5percent, in that, about 78% is sodium chloride and 15% is chloride and sulphate of magnesium. It is reported that the use of sea water for mixing concrete does not appreciably reduce the strength of concrete although it may lead to corrosion of reinforcement in certain cases. The purpose of the experiment is to prove the doubt of people whether or not if salt water has an effect on concrete.

1.5 DEFINITION OF TERMS 

 ACCELERATION:- There are substances that speeds up rate of a reaction, for photography, an accelerator speeds the action of a developer. For structural engineering, an accelerator speeds the setting of concrete. In the manufacture of plastics, an accelerator is used to speed up the curing of epoxy and other resion-type plastics.

 GRAVEL:- Gravel, loose material consisting of rock or mineral fragments. Gravel fragments are larger than sand particles and smaller than boulders specifically, gravel particles are larger than 2mm (0.08m) in diameter and smaller than 256mm (10m) in diameter. Gravel is a constituents of concrete, which is used in construction. Gravel is produced by the weathering and erosion of rocks, strong river currents or glaciers often transport gravel greats distances before it is disposited. Rock fragments in gravel that has been transported by water are worm and rounded, while theso carried by ice usually have sharp angular edges. The rock fragments in gravel transported by rivers also vary in sizeless than those transported by glaciers. Gravels are also found on beaches where there is strong wave actives are very round and smooth.

 SAND:- Sand loose incoherent mass of mineral materials in a finely gramilar condition, usually consisting of quartz (silica) with a small proportion of mica, feldspar, magnetite, and other resistant minerals. It is the product of the chemical and mechanical disintegration of rocks under the influence of weathering and abrasion. When freshly formed, the particles are usually angular and sharply pointed, becoming smaller and more rounded by attrition by the wind or by water.

QUARRY AND QUARRYING : Quarry and quarrying, open excavation from which any useful stone is extracted for building and engineering purpose and the operations required to obtain rock in useful form from a quarry. The two principal branches of the industry are the so-called dimension-stone and crushed stone quarrying. In the firms, blocks of stones such as marble, are extracted in different shapes and sizes for different purposes. In the crushed-stone industry.

CHAPTER TWO: Chapter two of this Effects Of Salt Water On Concrete” research work is available. Chapter Two of “Effects Of Salt Water On Concrete Contains: Literature Review, Admixtures, Quality Of Water For Preparing Concrete, Batching, Proportioning And Mixing Of Concrete, Comparison Of Salt Water And Fresh Water, Cement Hydration, Workability And Shrimp Of Fresh Concrete And Curing Of Concrete.
 
CHAPTER THREE: Chapter three of this Effects Of Salt Water On Concrete” academic work is available.  Chapter Three of “Effects Of Salt Water On Concrete" Contains: Materials And Methods, Collection Of Fresh/Tap Water Sample, Analysis Of The Water Sample, Grading Of Course Aggregates, Batching And Mixing Of Samples Materials Required, Curing Of Concrete Cubes, Determination Of The Compressive Strength And Density Of The Concrete Cubes And Mix Design.
 
CHAPTER FOUR: Chapter four of this Effects Of Salt Water On Concrete project work is available.Chapter Four of Effects Of Salt Water On Concrete Contains: Data Presentation, Calculations And Analysis.
 
CHAPTER FIVE: Chapter five of this Effects Of Salt Water On Concrete material is available. Chapter Five of Effects Of Salt Water On Concrete Contains: Conclusion, Recommendations And Reference.
 

  DOWNLOAD THE COMPLETE PROJECT

EFFECTS OF SALT WATER ON CONCRETE

Not The Topic You Are Looking For?



For Quick Help Chat with Us Now!

+234 813 292 6373

+233 55 397 8005


HOW TO GET THE COMPLETE PROJECT ON EFFECTS OF SALT WATER ON CONCRETE INSTANTLY

  • Click on the Download Button above.
  • Select any option to get the complete project immediately.
  • Chat with Our Instant Help Desk on +234 813 292 6373 for further assistance.
  • All projects on our website are well researched by professionals with high level of professionalism.

Here's what our amazing customers are saying

Abraham Ogbanje
NATIONAL OPEN UNIVERSITY OF NIGERIA
At first I was afraid.. But I discovered they are legit. I will bring more patronize
Very Good
Stancy M
Abia State University, Uturu
I did not see my project topic on your website so I decided to call your customer care number, the attention I got was epic! I got help from the beginning to the end of my project in just 3 days, they even taught me how to defend my project and I got a 'B' at the end. Thank you so much iprojectmaster, infact, I owe my graduating well today to you guys...
Excellent
Abubakar Iliyasu Hashim
Federal college of education pankshin affiliated to university of jos
I am highly impressed with your unquantifiable efforts for the leaners, more grace to your elbow.I will inform my colleagues about your website.
Very Good
JONNAH EHIS
Ajayi Crowther University, Oyo
I was scared at first when I saw your website but I decided to risk my last 3k and surprisingly I got my complete project in my email box instantly. This is so nice!!!
Excellent
Ibrahim Muhammad Muhammad
Usmanu danfodiyo university, sokoto
It's a site that give researcher student's to gain access work,easier,affordable and understandable. I appreciate the iproject master teams for making my project work fast and available .I will surely,recommend this site to my friends.thanks a lot..!
Excellent
Musa From Ahmadu Bello University
Thank you iprojectmaster for saving my life, please keep it up and may God continue to bless you people.
Excellent
Dau Mohammed Kabiru
Kaduna State College of Education Gidan Waya
This is my first time..Your service is superb. But because I was pressed for time, I became jittery when I did not receive feedbackd. I will do more business with you and I will recommend you to my friends. Thank you.
Very Good
Adam Alhassan Yakubu
UDS
Excellent work and delivery , I promise to share my testimonies everyone in need of this kind of work. You're the best
Excellent
Merry From BSU
I am now a graduate because of iprojectmaster.com, God Bless you guys for me.
Excellent
Samuel From Ajayi Crowther University
You guys just made life easier for students. Thanks alot iprojectmaster.com
Excellent

FREQUENTLY ASKED QUESTIONS

How do I get this complete project on EFFECTS OF SALT WATER ON CONCRETE?

Simply click on the Download button above and follow the procedure stated.

I have a fresh topic that is not on your website. How do I go about it?

How fast can I get this complete project on EFFECTS OF SALT WATER ON CONCRETE?

Within 15 minutes if you want this exact project topic without adjustment

Is it a complete research project or just materials?

It is a Complete Research Project i.e Chapters 1-5, Abstract, Table of Contents, Full References, Questionnaires / Secondary Data

What if I want to change the case study for EFFECTS OF SALT WATER ON CONCRETE, What do i do?

Chat with Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately

How will I get my complete project?

Your Complete Project Material will be sent to your Email Address in Ms Word document format

Can I get my Complete Project through WhatsApp?

Yes! We can send your Complete Research Project to your WhatsApp Number

What if my Project Supervisor made some changes to a topic i picked from your website?

Call Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately

Do you assist students with Assignment and Project Proposal?

Yes! Call Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately

What if i do not have any project topic idea at all?

Smiles! We've Got You Covered. Chat with us on WhatsApp Now to Get Instant Help: +234 813 292 6373

How can i trust this site?

We are well aware of fraudulent activities that have been happening on the internet. It is regrettable, but hopefully declining. However, we wish to reinstate to our esteemed clients that we are genuine and duly registered with the Corporate Affairs Commission as "PRIMEDGE TECHNOLOGY". This site runs on Secure Sockets Layer (SSL), therefore all transactions on this site are HIGHLY secure and safe!