The need to re-develop one of the Brown fields located in the Niger Delta area of Nigeria was necessitated by the fact that there are still three undeveloped reservoirs in the field. A total of six stacked reservoirs, A100 to A600 (all oil bearing with associated gas) were penetrated between 8552 ftss and 10652 ftss by APV-1 well. Reservoir blocks A200 and A600 are the largest in the field accounting for 77% of the total field STOIIP. The well was completed with a Two String Multiple (TSM) on the two levels, with the short string producing from the A200 reservoir and the long string producing from the deeper A600 reservoir, A300 behind the sleeve. The purpose of this research is to identify the best developmental plan to produce the reservoirs, either with a TSM completion or with a Smart well completion based on the economics. There are many single well fields in the Niger Delta area of Nigeria that have not been optimally produced, hence this study seeks to maximize the life of this field. The reservoirs were simulated and production forecast carried out amounted to 14.55 MMstb for a period of 16 years. After economic analysis was performed, the Net Present Value for the TSM and the Smart well completion were US $MM 241.9 and 248.88 respectively and an Internal Rate of Return of 155% and 202% respectively, hence the Smart well development plan is recommended.
Petroleum reserves are declining, and fewer noteworthy discoveries have been made in recent years (Abdus, 2010). The need to increase recovery from the vast amount of remaining oil and to compete globally require healthier reservoir management practices (Abdus et al, 2014). However, technological developments in all areas of petroleum exploration and exploitation, along with fast increasing computing power, are providing the tools to better develop and manage reservoirs to maximize economic recovery of hydrocarbons (Abdus, 2010).
A reservoir's life begins with exploration, which leads to discovery; reservoir delineation; field development; production by primary, secondary and tertiary means; and abandonment (Figure. 1.1). Sound reservoir management is the key to successful operation of the reservoir throughout its entire life. It is a continuous course, unlike how the baton is passed in traditional E&P organizations (Abdus et al, 2014). Reservoir Management is all about excellence in the Operate phase of an E&P project life cycle. This is the only phase (Operate) that earns income, to provide the return on investment and it is the longest of the four (4) E & P business phases (Exploration, Appraisal, Development and Operate) spanning decades. (Shell WRM Operational Excellence, 2010).
Complete reservoir management requires the use of both human and technological resources for maximizing profits (Abdus et al, 2014). It requires good coordination of geologists, geophysicists, production, and petroleum engineers to advance petroleum exploration, development, and production. Also, technological advances and computer tools can facilitate better reservoir management as well as enhance economic recovery of hydrocarbons. Even a 11 small percent increase in recovery efficiency could amount to significant additional recovery and profit. These incentives and challenges provide the motivation to sound reservoir management. Reservoir simulation is the way by which one uses a numerical model of the geological and petrophysical characteristics of a hydrocarbon reservoir to analyze and predict fluid behavior in the reservoir over time. In its simple form, a reservoir simulation model is made up of three parts: (i) a geological model in the form of a volumetric grid with face properties that describes the given porous rock formation; (ii) a flow model that defines how fluids flow in a porous medium, typically given as a set of partial differential equations expressing conservation of mass or volumes together with suitable closure relations; and (iii) a well model that describes the flow in and out of the reservoir, including a model for flow within the well bore and any coupling to flow control devices or surface facilities (Lie, 2014).
How do I get this complete project on MATERIAL BALANCE APPLICATION FOR BROWNFIELD DEVELOPMENT? Simply click on the Download button above and follow the procedure stated. |
I have a fresh topic that is not on your website. How do I go about it? |
How fast can I get this complete project on MATERIAL BALANCE APPLICATION FOR BROWNFIELD DEVELOPMENT? Within 15 minutes if you want this exact project topic without adjustment |
Is it a complete research project or just materials? It is a Complete Research Project i.e Chapters 1-5, Abstract, Table of Contents, Full References, Questionnaires / Secondary Data |
What if I want to change the case study for MATERIAL BALANCE APPLICATION FOR BROWNFIELD DEVELOPMENT, What do i do? Chat with Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately |
How will I get my complete project? Your Complete Project Material will be sent to your Email Address in Ms Word document format |
Can I get my Complete Project through WhatsApp? Yes! We can send your Complete Research Project to your WhatsApp Number |
What if my Project Supervisor made some changes to a topic i picked from your website? Call Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately |
Do you assist students with Assignment and Project Proposal? Yes! Call Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately |
What if i do not have any project topic idea at all? Smiles! We've Got You Covered. Chat with us on WhatsApp Now to Get Instant Help: +234 813 292 6373 |
How can i trust this site? We are well aware of fraudulent activities that have been happening on the internet. It is regrettable, but hopefully declining. However, we wish to reinstate to our esteemed clients that we are genuine and duly registered with the Corporate Affairs Commission as "PRIMEDGE TECHNOLOGY". This site runs on Secure Sockets Layer (SSL), therefore all transactions on this site are HIGHLY secure and safe! |