Select Currency
Translate this page

MECHANICAL PROPERTIES OF AN ALUMINIUM OR SILICON CARBIDE COMPOSITE CONNECTING ROD CONTAINING VARYING VOLUME FRACTIONS OF SIC

Format: MS WORD  |  Chapter: 1-5  |  Pages: 85  |  1533 Users found this project useful  |  Price NGN5,000

  DOWNLOAD THE COMPLETE PROJECT

MECHANICAL PROPERTIES OF AN ALUMINIUM OR SILICON CARBIDE COMPOSITE CONNECTING ROD CONTAINING VARYING VOLUME FRACTIONS OF SIC

 

ABSTRACT

Metal Matrix Composites (MMC’s) have evoked a keen interest in recent times for potential applications. Composite materials like Particle-reinforced Aluminium Silicon carbide (Al/SiC) Metal-Matrix Composite is gradually becoming very important materials in manufacturing industries e.g. aerospace, automotive and automobile industries due to their superior properties such as light weight, low density, high strength to weight ratio, high hardness, high temperature and thermal shock resistance, superior wear and corrosive resistance, high specific modulus, high fatigue strength etc. In this study, Connecting rods made from commercial pure aluminum alloy (about 99.1% purity) / Silicon carbide (SiC) reinforced particles metal-matrix composites (MMCs) are fabricated by green sand casting. The MMCs connecting rods (Big end ø 68 mm, pin end ø 32 mm, 136 mm Center to Center height) are prepared by varying the reinforced particles by weight fraction ranging from 0%, 5%, 10%, 15%  and 20 %. The average reinforced particles size of SiC are 75 microns (µm), 125 microns (µm) and 300 microns (µm) respectively. The microstructure and mechanical properties like Ultimate tensile strength (MPa), Breaking strength (MPa), Elastic Modulus (Mpa), % Elongation, Hardness (HRB), are investigated on prepared specimens of MMCs. It was observed that the hardness of the composite is increased with increasing of reinforced particle weight fraction. The tensile strength is increased with rising of reinforced weight fraction. Different mechanical tests were conducted and presented by varying the particle size and weight fractions of the Silicon carbide (SiC) particulates.

 

CHAPTER ONE

INTRODUCTION

A composite is considered to be any multiphase material that exhibits a significant proportion of the properties of both constituent phases such that a better combination of properties is realized. This is termed as the ‘principle of combined action’ (2). According to this principle, better combinations are fashioned by the judicious combination of two or more distinct materials. All composites generally have one thing in common: a matrix or binder combined with a reinforcing material, within which is a dispersion of one or more phases of another material. Metal matrix composites, as we know today have evolved significantly during the past few years. The primary support of the composites has come from the aerospace industry for airframe and spacecraft structures. More recently the automotive, electronics and recreation industries have been working diligently with these composites. The driving force behind the development of most of the existing composites has been their capability to be designed to provide needed types of material behaviour.

The focus of research and development in the metal matrix composites (MMCs) area has recently shifted toward low-cost discontinuously reinforced composites which are targeted for automotive and aerospace applications. The optimum properties of MMCs and the enhanced performance from these materials however depend on the judicious selection of the metallic matrix material, reinforcing phase and the processing technique. The composite fabrication technique is an important consideration. For a given set of constituents, the fundamental link between properties and cost is determined by the fabrication method. Processing in general, is concerned with the introduction of reinforcement into the matrix with a uniform distribution. The major hurdle is the achievement of proper bonding between the matrix and the reinforcement in order to attain good load transfer between phases.

A wide variety of fabrication techniques have been explored for metal matrix composites. These include liquid phase methods, deposition of matrix from a semi solid or vapour phase, and solid state consolidation. Liquid phase processing has attractive economic aspects. Chopped fibres, porous ceramics compacts and particulates have been incorporated into matrix alloys. In some cases, pressure assistance has been used to infiltrate the reinforcement with the molten matrix. These methods result in microstructures dictated by the solidification of the molten metal. The green sand casting technique has been among the simplest and the most economical processes of fabricating the particulate metal matrix composites. However due to poor wetting of the ceramic particles by molten alloy, the introduction and uniform dispersion of the reinforcement into the liquid matrix is difficult.

  DOWNLOAD THE COMPLETE PROJECT

MECHANICAL PROPERTIES OF AN ALUMINIUM OR SILICON CARBIDE COMPOSITE CONNECTING ROD CONTAINING VARYING VOLUME FRACTIONS OF SIC

Not The Topic You Are Looking For?



For Quick Help Chat with Us Now!

+234 813 292 6373

+233 55 397 8005


HOW TO GET THE COMPLETE PROJECT ON MECHANICAL PROPERTIES OF AN ALUMINIUM OR SILICON CARBIDE COMPOSITE CONNECTING ROD CONTAINING VARYING VOLUME FRACTIONS OF SIC INSTANTLY

  • Click on the Download Button above.
  • Select any option to get the complete project immediately.
  • Chat with Our Instant Help Desk on +234 813 292 6373 for further assistance.
  • All projects on our website are well researched by professionals with high level of professionalism.

Here's what our amazing customers are saying

Adam Alhassan Yakubu
UDS
Excellent work and delivery , I promise to share my testimonies everyone in need of this kind of work. You're the best
Excellent
Joseph M. Yohanna
Thanks a lot, am really grateful and will surely tell my friends about your website.
Excellent
Abdul Mateen Iddrisu
UDS
At first I taught is a site full of fraudsters until I saw my project in my Gmail after my payment.. THANK YOU IPROJECTMASTER and May God the almighty bless u guys abundantly
Excellent
Peace From Unilag
I cried not knowing how to go about my project but the day i searched online and saw iprojectmaster, i called and got my full project in less than 15minutes, i was shocked!
Excellent
MATTHEW NGBEDE
Ahmadu Bello University
I wish I knew you guys when I wrote my first degree project, it took so much time and effort then. Now, with just a click of a button, I got my complete project in less than 15 minutes. You guys are too amazing!
Excellent
Oluchi From Michael Opara University
If you are a student and you have not used iprojectmaster materials, you are missing big time! iprojectmaster is the BEST
Excellent
Azeez Abiodun
Moshood Abiola polytechnic
I actually googled and saw about iproject master, copied the number and contacted them through WhatsApp to ask for the availability of the material and to my luck they have it. So there was a delay with the project due to the covid19 pandemic. I was really scared before making the payment cause I’ve been scammed twice, they attended so well to me and that made me trust the process and made the payment and provided them with proof, I got my material in less than 10minutes
Very Good
Musa From Ahmadu Bello University
Thank you iprojectmaster for saving my life, please keep it up and may God continue to bless you people.
Excellent
Temitayo Ayodele
Obafemi Awolowo University
My friend told me about iprojectmaster website, I doubted her until I saw her download her full project instantly, I tried mine too and got it instantly, right now, am telling everyone in my school about iprojectmaster.com, no one has to suffer any more writing their project. Thank you for making life easy for me and my fellow students... Keep up the good work
Very Good
Abdulrahman Jibrin
Nti Abaji
Nice one work prompt delivery tanx
Very Good

FREQUENTLY ASKED QUESTIONS

How do I get this complete project on MECHANICAL PROPERTIES OF AN ALUMINIUM OR SILICON CARBIDE COMPOSITE CONNECTING ROD CONTAINING VARYING VOLUME FRACTIONS OF SIC?

Simply click on the Download button above and follow the procedure stated.

I have a fresh topic that is not on your website. How do I go about it?

How fast can I get this complete project on MECHANICAL PROPERTIES OF AN ALUMINIUM OR SILICON CARBIDE COMPOSITE CONNECTING ROD CONTAINING VARYING VOLUME FRACTIONS OF SIC?

Within 15 minutes if you want this exact project topic without adjustment

Is it a complete research project or just materials?

It is a Complete Research Project i.e Chapters 1-5, Abstract, Table of Contents, Full References, Questionnaires / Secondary Data

What if I want to change the case study for MECHANICAL PROPERTIES OF AN ALUMINIUM OR SILICON CARBIDE COMPOSITE CONNECTING ROD CONTAINING VARYING VOLUME FRACTIONS OF SIC, What do i do?

Chat with Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately

How will I get my complete project?

Your Complete Project Material will be sent to your Email Address in Ms Word document format

Can I get my Complete Project through WhatsApp?

Yes! We can send your Complete Research Project to your WhatsApp Number

What if my Project Supervisor made some changes to a topic i picked from your website?

Call Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately

Do you assist students with Assignment and Project Proposal?

Yes! Call Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately

What if i do not have any project topic idea at all?

Smiles! We've Got You Covered. Chat with us on WhatsApp Now to Get Instant Help: +234 813 292 6373

How can i trust this site?

We are well aware of fraudulent activities that have been happening on the internet. It is regrettable, but hopefully declining. However, we wish to reinstate to our esteemed clients that we are genuine and duly registered with the Corporate Affairs Commission as "PRIMEDGE TECHNOLOGY". This site runs on Secure Sockets Layer (SSL), therefore all transactions on this site are HIGHLY secure and safe!