PERFORMANCE EVALUATION OF DIFFERENT MATERIALS AS CHILLS IN SAND CASTING OF ALUMINIUM ALLOY
ABSTRACT
This study has evaluated the effectiveness of metallic materials as chill in sand casting of aluminium alloy. Four plates of dimension 165mm x 80mm x10mm were cast using sand mould. Steel, copper and brass chills in form of cylindrical bar of geometry 7mm in diameter and 50mm long were inserted, side by side at regular intervals of 30mm in each sand mould and the last sample was left unchilled. Experimentation involved testing of mechanical properties and metallographic analysis of cast samples. The results obtained revealed that the sample chilled with copper has the highest mechanical properties (ultimate tensile strength of 126.13MPa, hardness of 6.8Hv and impact strength of 23.5J).Also sample chilled with copper revealed evenly distributed microstructure which is due to the fast solidification rate of the casting due to the high thermal conductivity of copper. The brass chill sample displayed better mechanical properties (ultimate tensile strength of 115.8MPa, hardness of 5.7Hv and impact strength of 22.4J) than sample chilled with steel (ultimate tensile strength of 101.33MPa and hardness of 5.4Hv). However, the unchilled sample showed the lowest ultimate tensile strength of 70.67MPa, hardness of 4.2Hv and impact strength of 22.5J.
CHAPTER ONE
1.0 INTRODUCTION
1.1 Background to the study
Metal casting is a shape forming process whereby molten metal is poured into a prepared mould and allowed to solidify such that the shape of the solidified object is determined by the shape of the mould cavity. Sand casting is a metal casting process characterized by using sand as the mould material (Ibhadode, 2001). Casting can be broadly divided into two main categories as expendable and nonexpendable mould casting. It can also be classified according to the mould material used to cast the metal such as sand casting, ceramic casting or metal mould casting and depending on the pouring methods as gravity casting, low pressure die casting and high pressure die casting (Navaneeth, 2009).
How do I get this complete project on PERFORMANCE EVALUATION OF DIFFERENT MATERIALS AS CHILLS IN SAND CASTING OF ALUMINIUM ALLOY? Simply click on the Download button above and follow the procedure stated. |
I have a fresh topic that is not on your website. How do I go about it? |
How fast can I get this complete project on PERFORMANCE EVALUATION OF DIFFERENT MATERIALS AS CHILLS IN SAND CASTING OF ALUMINIUM ALLOY? Within 15 minutes if you want this exact project topic without adjustment |
Is it a complete research project or just materials? It is a Complete Research Project i.e Chapters 1-5, Abstract, Table of Contents, Full References, Questionnaires / Secondary Data |
What if I want to change the case study for PERFORMANCE EVALUATION OF DIFFERENT MATERIALS AS CHILLS IN SAND CASTING OF ALUMINIUM ALLOY, What do i do? Chat with Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately |
How will I get my complete project? Your Complete Project Material will be sent to your Email Address in Ms Word document format |
Can I get my Complete Project through WhatsApp? Yes! We can send your Complete Research Project to your WhatsApp Number |
What if my Project Supervisor made some changes to a topic i picked from your website? Call Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately |
Do you assist students with Assignment and Project Proposal? Yes! Call Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately |
What if i do not have any project topic idea at all? Smiles! We've Got You Covered. Chat with us on WhatsApp Now to Get Instant Help: +234 813 292 6373 |
How can i trust this site? We are well aware of fraudulent activities that have been happening on the internet. It is regrettable, but hopefully declining. However, we wish to reinstate to our esteemed clients that we are genuine and duly registered with the Corporate Affairs Commission as "PRIMEDGE TECHNOLOGY". This site runs on Secure Sockets Layer (SSL), therefore all transactions on this site are HIGHLY secure and safe! |