Select Currency
Translate this page

DESIGN AND IMPLEMENTATION OF GEOGRAPHICAL INFORMATION SYSTEM

Format: MS WORD  |  Chapter: 1-5  |  Pages: 69  |  879 Users found this project useful  |  Price NGN5,000

  DOWNLOAD THE COMPLETE PROJECT

DESIGN AND IMPLEMENTATION OF GEOGRAPHICAL INFORMATION SYSTEM

 

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF THE STUDY

This chapter gives an overview about the aim, objectives, background and operation environment of the system. There are several definitions of GIS in existence. However, none of such definitions is universally accepted. It is difficult to agree on a single definition for GIS for the simple reason that various kinds of GIS exist, each made for different purposes and for different types of decision making. As we will see shortly in the range of definitions presented below, people offer definitions of GIS with different emphasis on various aspects of GIS.

Man has always used geographical information. Geographical features and data gathering form part of our everyday lives. Indeed, most of the decisions we make on a daily basis are influenced by some aspects of geography. Hence, one would be right to say that, generally speaking, geographical information system is as old as man himself. However, in this unit our focus is on modern geographical information system. We will briefly look at the emergence and growth of GIS as well as the underlying factors.

1.2 STATEMENT OF THE PROBLEMS

“As transportation, communication, and utility networks continue to grow in complexity and size, the likelihood of two or more networks occupying a common right-of-way or intersecting each other also continues to increase. Conflicts arise when one network or another decides to perform construction or maintenance on their facilities.” (Ellis, 2003, p. 5). Mulaku phrases this issue in other words by stating “there will be intense completion for the finite space that utility facilities must occupy on road and other reserves and hence precise location will become even more important” (Mulaku, 2004, p. 30). Each year departments of transpiration spend millions of dollars to deal with problems that arise due to utility conflicts. As these conflicts arise, it is vital that the owners of the various utilities be able to accurately locate their facilities in three-dimensional space. Accurate location is the beginning of conflict detection, avoidance, and resolution.

Mulaku documents that over 80 percent of all utility operations are spatial in nature (Mulaku, 2004). This information was collaborated by Hemakumara in a paper entitled Geographic Information Systems in Utilities and Utility Management. Hemakumara determined that 80 to 85 percent of a utility’s information needs is location or spatially based (Hemakumara, 2003). Utilities, needs are dependent upon spatial information for their operations, engineering, and management. The information must not only be available, it must be precise (Mulaku, 2004).

In 2003, Ellis completed a study for the Florida Department of Transportation (FDOT) entitled Development of Improved Strategies for Avoiding Utility Related Delay During FDOT Highway Construction Projects. Ellis determined that utility relocation delays were one of the top five causes of construction delays on FDOT projects. These delays in turn caused project time delays and additional project costs. Ellis further determined that one of the major factors accounting for the delays was the fact that actual locations and types of utilities shown on the plans did accurately portray actual field conditions (Ellis, 2003). Ellis accurately describes the fundamental problem by stating “one of the fundamental problems is that there is usually no accurate data on the exact location, or sometimes even the existence of these buried features (2003, p. 7). Allred substantiated this view, in a paper entitled Underground Facilities: The Need for Accurate Records in an Expanding Society. Allred documents that there is a need for accurate as-built mapping of all underground facilities (Allred, 2004).

All types of utilities contribute to the complexity of locating underground utilities. Kelly and Nawarynsky assert that “Excavation is one the most dangerous activities in the construction industry (Kelly, Nawarynsky, 1996, p.1). Excavation is the single largest cause of gas and hazardous liquid pipeline accidents in the United States. During the 1988 to 1993 time period, 33 percent of all gas pipeline incidents were cause by excavation damage by persons other than the facilities owner or owner’s contractors. In addition, 35 deaths and 151 injuries were attributed to theses incidents as well as $42.5 million in property damage (Kelly, Nawarynsky, 1996).

Given the extent of the problem, the construction industry can gain substantial benefit from the accurate mapping of underground utilities. A Geographic Information System (GIS) is especially well adapted to provide information on utility location (Hemakumara, 2003). This view is shared by NETTWORK, 2002. They state that GIS provides the necessary computational, graphical, and information handling technology needed to record all necessary information on all buried utilities in a user friendly, accurate, three dimensional manner. While the accurate mapping of new installations is well defined in the literature, this paper is intended to investigate methods and procedures that can be used to capture the legacy utility location information in a modern GIS format.

1.3 OBJECTIVES OF THE STUDY

To introduce students to the concepts and the techniques of handling geographical data through a particular form of information system – GIS;

To introduce students to the skills and techniques to input, manage, analyse and display spatial information; and

To introduce students to the concepts and techniques for spatial data analysis and modelling.

Geographical Information System (GIS) is an information system that is specially designed handling spatial (or geographical) data. It combines a set of interrelated sub-systems that create, edit, manipulate, analyse and display data both in text and graphic forms. GIS supports spatial analysis and modelling for the discipline of geography (e.g. location, proximity, and spatial distribution), so that it becomes a vital tool for modern geography. With the rapid progress of computing and Internet technology, GIS technology allows easy and fast access to important geographical information on the region, environment and society.

1.4 SIGNIFICANCE OF THE STUDY

The significance of this study was to help and give a benefit to the student, business marketers, geologists, methodologists, school management, companies, and other places that need this system. The system would improve the monitoring capacities of those who maintain the system.

1.5  LIMITATION OF THE STUDY

Unavailability of academic materials.

Transport problem

Lack of financial support

Lack of Time

Unavailability of programming software such as Visual Basic.Net.

1.6  SCOPE OF THE STUDY

This research work will concentrate on the implementation of the system to see how it works and how it can be used.

1.7    ASSUMPTION OF THE STUDY

During the process of data collection, information relating to Geographical Information System was developed by me and written project was obtained from the internet and the Library. Hence, it is assumed that all the data collected are correct and contains no false information.

1.8 DEFINITION OF TERMS

Attribute – A characteristic of a geographic feature, typically stored in tabular format and linked to the feature in a relational database. The attributes of a well-represented point might include an identification number, address, and type.

Base Layer – A primary layer for spatial reference, upon which other layers are built. Examples of a base layer typically used are either the parcels, or street centerlines.

Buffer – A zone of a specified distance around a feature.

Computer Aided Design (CAD) – An automated system for the design, drafting and display of graphically oriented information.

Coordinate – An x,y location in a Cartesian coordinate system or an x,y,z coordinate in a three dimensional system. Coordinates represent locations on the Earth’s surface relative to other locations.

Database – A logical collection of interrelated information, managed and stored as a unit. A GIS database includes data about the spatial location and shape of geographic features recorded as points, lines, and polygons as well as their attributes.

Digital Elevation Model (DEM) – Terrain elevation data provided in digital form.

Digitize – To encode map features as x,y coordinates in digital form. Lines are traced to define their shapes. This can be accomplished either manually or by use of a scanner.

Geocode – The process of identifying a location by one or more attributes from a base layer.

Geographic Information System (GIS) – An organized collection of computer hardware, software, geographic data, and personnel designed to efficiently capture, store, update, manipulate, analyze, and display all forms of geographically referenced information.

Global Positioning System (GPS) – A satellite based device that records x,y,z coordinates and other data. Ground locations are calculated by signals from satellites orbiting the Earth. GPS devices can be taken into the field to record data while walking, driving, or flying.

Layer – A logical set of thematic data described and stored in a map library. Layers act as digital transparencies that can be laid atop one another for viewing or spatial analysis.

Line – Lines represent geographic features too narrow to be displayed as an area at a given scale, such as contours, street centerlines, or streams.

Metadata – Information about a data set. It may include the source of the data; its creation date and format; its projection, scale, resolution, and accuracy; and its reliability with regard to some standard.

Ortho Imagery – Aerial photographs that have been rectified to produce an accurate image of the Earth by removing tilt and relief displacements, which occurred when the photo was taken.

Point – A single x,y coordinate that represents a geographic feature too small to be displayed as a line or area at that scale.

Polygon – A multisided figure that represents area on a map. Polygons have attributes that describe the geographic feature they represent.

Scale – The ratio or relationship between a distance or area on a map and the corresponding distance or area on the ground.

Spatial Analysis – The process of modeling, examining, and interpreting model results. Spatial analysis is useful for evaluating suitability and capability, for estimating and predicting, and for interpreting and understanding.

Structured Query Language (SQL) – A syntax for defining and manipulating data from a relational database. Developed by IBM in the 1970s, it has become an industry standard for query languages in most relational database management systems.

Theme – An ArcView theme stores map features as primary features (such as arcs, nodes, polygons, and points) and secondary features such as tics, map extent, links, and annotation. A theme usually represents a single geographic layer, such as soils, roads, or land use.

Attribute – A characteristic of a geographic feature, typically stored in tabular format and linked to the feature in a relational database. The attributes of a well-represented point might include an identification number, address, and type.

Base Layer – A primary layer for spatial reference, upon which other layers are built. Examples of a base layer typically used are either the parcels, or street centerlines.

Buffer – A zone of a specified distance around a feature.

Computer Aided Design (CAD) – An automated system for the design, drafting and display of graphically oriented information.

Coordinate – An x,y location in a Cartesian coordinate system or an x,y,z coordinate in a three dimensional system. Coordinates represent locations on the Earth’s surface relative to other locations.

Database – A logical collection of interrelated information, managed and stored as a unit. A GIS database includes data about the spatial location and shape of geographic features recorded as points, lines, and polygons as well as their attributes.

Digital Elevation Model (DEM) – Terrain elevation data provided in digital form.

Digitize – To encode map features as x,y coordinates in digital form. Lines are traced to define their shapes. This can be accomplished either manually or by use of a scanner.

Geocode – The process of identifying a location by one or more attributes from a base layer.

Geographic Information System (GIS) – An organized collection of computer hardware, software, geographic data, and personnel designed to efficiently capture, store, update, manipulate, analyze, and display all forms of geographically referenced information.

Global Positioning System (GPS) – A satellite based device that records x,y,z coordinates and other data. Ground locations are calculated by signals from satellites orbiting the Earth. GPS devices can be taken into the field to record data while walking, driving, or flying.

Layer – A logical set of thematic data described and stored in a map library. Layers act as digital transparencies that can be laid atop one another for viewing or spatial analysis.

Line – Lines represent geographic features too narrow to be displayed as an area at a given scale, such as contours, street centerlines, or streams.

Metadata – Information about a data set. It may include the source of the data; its creation date and format; its projection, scale, resolution, and accuracy; and its reliability with regard to some standard.

Ortho Imagery – Aerial photographs that have been rectified to produce an accurate image of the Earth by removing tilt and relief displacements, which occurred when the photo was taken.

Point – A single x,y coordinate that represents a geographic feature too small to be displayed as a line or area at that scale.

Polygon – A multisided figure that represents area on a map. Polygons have attributes that describe the geographic feature they represent.

Scale – The ratio or relationship between a distance or area on a map and the corresponding distance or area on the ground.

Spatial Analysis – The process of modeling, examining, and interpreting model results. Spatial analysis is useful for evaluating suitability and capability, for estimating and predicting, and for interpreting and understanding.

Structured Query Language (SQL) – A syntax for defining and manipulating data from a relational database. Developed by IBM in the 1970s, it has become an industry standard for query languages in most relational database management systems.

Theme – An ArcView theme stores map features as primary features (such as arcs, nodes, polygons, and points) and secondary features such as tics, map extent, links, and annotation. A theme usually represents a single geographic layer, such as soils, roads, or land use.

  DOWNLOAD THE COMPLETE PROJECT

DESIGN AND IMPLEMENTATION OF GEOGRAPHICAL INFORMATION SYSTEM

Not The Topic You Are Looking For?



For Quick Help Chat with Us Now!

+234 813 292 6373

+233 55 397 8005


HOW TO GET THE COMPLETE PROJECT ON DESIGN AND IMPLEMENTATION OF GEOGRAPHICAL INFORMATION SYSTEM INSTANTLY

  • Click on the Download Button above.
  • Select any option to get the complete project immediately.
  • Chat with Our Instant Help Desk on +234 813 292 6373 for further assistance.
  • All projects on our website are well researched by professionals with high level of professionalism.

Here's what our amazing customers are saying

Dau Mohammed Kabiru
Kaduna State College of Education Gidan Waya
This is my first time..Your service is superb. But because I was pressed for time, I became jittery when I did not receive feedbackd. I will do more business with you and I will recommend you to my friends. Thank you.
Very Good
Abdulrazak Bello Marsha
Usman Dan fodio University
It was quite a better guide for project and paper presentation purpoting. Many thanks.
Average
Stancy M
Abia State University, Uturu
I did not see my project topic on your website so I decided to call your customer care number, the attention I got was epic! I got help from the beginning to the end of my project in just 3 days, they even taught me how to defend my project and I got a 'B' at the end. Thank you so much iprojectmaster, infact, I owe my graduating well today to you guys...
Excellent
Samuel From Ajayi Crowther University
You guys just made life easier for students. Thanks alot iprojectmaster.com
Excellent
Abubakar Iliyasu Hashim
Federal college of education pankshin affiliated to university of jos
I am highly impressed with your unquantifiable efforts for the leaners, more grace to your elbow.I will inform my colleagues about your website.
Very Good
Ibrahim Muhammad Muhammad
Usmanu danfodiyo university, sokoto
It's a site that give researcher student's to gain access work,easier,affordable and understandable. I appreciate the iproject master teams for making my project work fast and available .I will surely,recommend this site to my friends.thanks a lot..!
Excellent
Gbadamosi Solomon Oluwabunmi
Lasu
Swift delivery within 9 minutes of payment. Thank you project master
Excellent
Musa From Ahmadu Bello University
Thank you iprojectmaster for saving my life, please keep it up and may God continue to bless you people.
Excellent
Joseph M. Yohanna
Thanks a lot, am really grateful and will surely tell my friends about your website.
Excellent
Emmanuel Essential
Kogi state University
I actually took the risk,you know first time stuff But i was suprised i received as requested. I love you guys 🌟 🌟 🌟 🌟
Very Good

FREQUENTLY ASKED QUESTIONS

How do I get this complete project on DESIGN AND IMPLEMENTATION OF GEOGRAPHICAL INFORMATION SYSTEM?

Simply click on the Download button above and follow the procedure stated.

I have a fresh topic that is not on your website. How do I go about it?

How fast can I get this complete project on DESIGN AND IMPLEMENTATION OF GEOGRAPHICAL INFORMATION SYSTEM?

Within 15 minutes if you want this exact project topic without adjustment

Is it a complete research project or just materials?

It is a Complete Research Project i.e Chapters 1-5, Abstract, Table of Contents, Full References, Questionnaires / Secondary Data

What if I want to change the case study for DESIGN AND IMPLEMENTATION OF GEOGRAPHICAL INFORMATION SYSTEM, What do i do?

Chat with Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately

How will I get my complete project?

Your Complete Project Material will be sent to your Email Address in Ms Word document format

Can I get my Complete Project through WhatsApp?

Yes! We can send your Complete Research Project to your WhatsApp Number

What if my Project Supervisor made some changes to a topic i picked from your website?

Call Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately

Do you assist students with Assignment and Project Proposal?

Yes! Call Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately

What if i do not have any project topic idea at all?

Smiles! We've Got You Covered. Chat with us on WhatsApp Now to Get Instant Help: +234 813 292 6373

How can i trust this site?

We are well aware of fraudulent activities that have been happening on the internet. It is regrettable, but hopefully declining. However, we wish to reinstate to our esteemed clients that we are genuine and duly registered with the Corporate Affairs Commission as "PRIMEDGE TECHNOLOGY". This site runs on Secure Sockets Layer (SSL), therefore all transactions on this site are HIGHLY secure and safe!