Select Currency
Translate this page

INVESTIGATING THE BEHAVIOUR OF AIR-SILICONE OIL FLOWS IN VERTICAL AND HORIZONTAL PIPES FOR EFFECTIVE GAS-LIQUID TRANSPORT

Format: MS WORD  |  Chapter: 1-5  |  Pages: 78  |  3208 Users found this project useful  |  Price NGN5,000

  DOWNLOAD THE COMPLETE PROJECT

INVESTIGATING THE BEHAVIOUR OF AIR-SILICONE OIL FLOWS IN VERTICAL AND HORIZONTAL PIPES FOR EFFECTIVE GAS-LIQUID TRANSPORT

 

ABSTRACT

The concurrent flow of gas/liquid in pipes poses a great challenge due to the difficulty associated with the flow of fluid. The flow is characterized by the existence of flow regimes which can be identified by the geometrical arrangement of the phases in a pipe, with Churn flow being the least understood flow pattern in vertical pipes because of the controversies associated with its existence, therefore making it difficult to be predicted. This work aims at investigating the behavior of air–silicone oil flows in vertical and horizontal pipes for effective gas–liquid transportation. To help predict the various flows that exist in these pipes, a drift-flux model was developed for the efficient calculation of void fraction. This model is often used to characterize and predict flow regimes for lots of geometries. The model was developed to calculate void fraction for the accurate prediction of flow regimes that were observed in this work. The various flow patterns in existence were identified, and the model generated for each of them by employing Zuber and Findlay‟s correlation. Afterwards, the parameters obtained from the drift-flux model, Co (distribution parameter) and Vd (drift velocity) were fitted as linear functions, and their values were obtained from the slope and the intercept respectively. The developed model had better results for the void fraction as compared to the existing correlations investigated.

 

CHAPTER ONE

1.1  Introduction

The simultaneous flow of fluids is difficult in a safe and controlled way, with the exception that various behaviors of the flow can be predicted with adequate reliability. It deals with the concurrent flow of fluids within different phases (i.e. gas, liquid and solid) or the different chemical properties but in the same phase, for example gas-liquid, gas-solid, liquid-solid, liquid-liquid and gas-liquid-solid (Abdulkadir, 2015). Multiphase flows are encountered in industries like; the petroleum, chemical, and nuclear industries. The transportation of gas- liquid two-phase flow in the petroleum industry over long distance is quite common. This simultaneous flow is encountered in instances like the flow of oil from the reservoir to the separator, and to the process facilities. As pressure decreases, gas starts to evolve, thereby creating a two-phase flow in the pipeline. Various difficulties are encountered in the flow of these fluids, some of which are phase velocity differences and the existence of several flow regimes. These flow regimes include; bubbly, slug, churn, plug, and stratified, among many others. The existence of these flow regimes in transportation lines poses certain challenges to the industry because they increase the pressure drop, heat transfer, mass and corrosion rate in the pipeline. Since the accurate prediction of these flow patterns is essential to the success of designing multiphase flow systems in vertical and horizontal flows, there is therefore, need to investigate the behavior of the fluids in pipes of various inclinations, for effective transportation in the industry.

1.2  Critics of Churn Flow

One may wish to know the reason for this particular subheading, the critics of churn flow. The topic is discussed because of the various schools of thoughts and ideologies from different research about the existence of churn flow regime. The question is, does Churn flow exist as a distinctive flow pattern or, it is just an extension of slug flow? To address this, this work is yet to find out as Mao and Dukler, and Hewitt and Jayanti presented different ideas about the existence of this particular flow.

According to Mao and Dukler (1993) in their paper, “The Myth of Churn Flow?” they presented evidence that proved that churn flow pattern is a simple and continuous extension of the condition of slug flow and that no transition actually existed. Therefore it is not a distinctive and separate flow pattern on its own. In view of this, they presented two different pieces of evidence to buttress their point. These are visual evidence and instrumental evidence where experiments were performed to support their findings.

1.2.1    Visual Evidence

This evidence is no different from what other researchers observed in transparent pipes. Based on this, one can conclude that their observations proved the existence of churn flow as a unique and separate pattern that exists as a transition from, slug flow to annular flow. According to Mao and Dukler, stable slug flow is an upward motion of a quasi-periodic arrangement of alternating Taylor bubbles and liquid slugs at a constant speed of propagation, and that the length of the Taylor bubbles and the liquid slugs remain the same as they rise. The velocity associated with the bubbles and liquid slugs is uniformly upward and the same as that which exists in front of both the slug and bubble. As the gas rate increases, the flow becomes chaotic, and the size of the liquid slug and Taylor bubbles increase forming lumps of bubbles as they move up and down the pipe. The flow then becomes oscillatory and displays irregular periods. Again, the main characteristic of slug flow is the falling of the liquid film around the Taylor bubbles and it disappears. 

  DOWNLOAD THE COMPLETE PROJECT

INVESTIGATING THE BEHAVIOUR OF AIR-SILICONE OIL FLOWS IN VERTICAL AND HORIZONTAL PIPES FOR EFFECTIVE GAS-LIQUID TRANSPORT

Not The Topic You Are Looking For?



For Quick Help Chat with Us Now!

+234 813 292 6373

+233 55 397 8005


HOW TO GET THE COMPLETE PROJECT ON INVESTIGATING THE BEHAVIOUR OF AIR-SILICONE OIL FLOWS IN VERTICAL AND HORIZONTAL PIPES FOR EFFECTIVE GAS-LIQUID TRANSPORT INSTANTLY

  • Click on the Download Button above.
  • Select any option to get the complete project immediately.
  • Chat with Our Instant Help Desk on +234 813 292 6373 for further assistance.
  • All projects on our website are well researched by professionals with high level of professionalism.

Here's what our amazing customers are saying

MATTHEW NGBEDE
Ahmadu Bello University
I wish I knew you guys when I wrote my first degree project, it took so much time and effort then. Now, with just a click of a button, I got my complete project in less than 15 minutes. You guys are too amazing!
Excellent
Merry From BSU
I am now a graduate because of iprojectmaster.com, God Bless you guys for me.
Excellent
Adam Alhassan Yakubu
UDS
Excellent work and delivery , I promise to share my testimonies everyone in need of this kind of work. You're the best
Excellent
Azeez Abiodun
Moshood Abiola polytechnic
I actually googled and saw about iproject master, copied the number and contacted them through WhatsApp to ask for the availability of the material and to my luck they have it. So there was a delay with the project due to the covid19 pandemic. I was really scared before making the payment cause I’ve been scammed twice, they attended so well to me and that made me trust the process and made the payment and provided them with proof, I got my material in less than 10minutes
Very Good
Ibrahim Muhammad Muhammad
Usmanu danfodiyo university, sokoto
It's a site that give researcher student's to gain access work,easier,affordable and understandable. I appreciate the iproject master teams for making my project work fast and available .I will surely,recommend this site to my friends.thanks a lot..!
Excellent
JONNAH EHIS
Ajayi Crowther University, Oyo
I was scared at first when I saw your website but I decided to risk my last 3k and surprisingly I got my complete project in my email box instantly. This is so nice!!!
Excellent
Uduak From Uniuyo
IProjectMaster is the best project site for students. Their works are unique and free of plagiarism!
Excellent
Gbadamosi Solomon Oluwabunmi
Lasu
Swift delivery within 9 minutes of payment. Thank you project master
Excellent
Abdul Mateen Iddrisu
UDS
At first I taught is a site full of fraudsters until I saw my project in my Gmail after my payment.. THANK YOU IPROJECTMASTER and May God the almighty bless u guys abundantly
Excellent
Temitayo Ayodele
Obafemi Awolowo University
My friend told me about iprojectmaster website, I doubted her until I saw her download her full project instantly, I tried mine too and got it instantly, right now, am telling everyone in my school about iprojectmaster.com, no one has to suffer any more writing their project. Thank you for making life easy for me and my fellow students... Keep up the good work
Very Good

FREQUENTLY ASKED QUESTIONS

How do I get this complete project on INVESTIGATING THE BEHAVIOUR OF AIR-SILICONE OIL FLOWS IN VERTICAL AND HORIZONTAL PIPES FOR EFFECTIVE GAS-LIQUID TRANSPORT?

Simply click on the Download button above and follow the procedure stated.

I have a fresh topic that is not on your website. How do I go about it?

How fast can I get this complete project on INVESTIGATING THE BEHAVIOUR OF AIR-SILICONE OIL FLOWS IN VERTICAL AND HORIZONTAL PIPES FOR EFFECTIVE GAS-LIQUID TRANSPORT?

Within 15 minutes if you want this exact project topic without adjustment

Is it a complete research project or just materials?

It is a Complete Research Project i.e Chapters 1-5, Abstract, Table of Contents, Full References, Questionnaires / Secondary Data

What if I want to change the case study for INVESTIGATING THE BEHAVIOUR OF AIR-SILICONE OIL FLOWS IN VERTICAL AND HORIZONTAL PIPES FOR EFFECTIVE GAS-LIQUID TRANSPORT, What do i do?

Chat with Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately

How will I get my complete project?

Your Complete Project Material will be sent to your Email Address in Ms Word document format

Can I get my Complete Project through WhatsApp?

Yes! We can send your Complete Research Project to your WhatsApp Number

What if my Project Supervisor made some changes to a topic i picked from your website?

Call Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately

Do you assist students with Assignment and Project Proposal?

Yes! Call Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately

What if i do not have any project topic idea at all?

Smiles! We've Got You Covered. Chat with us on WhatsApp Now to Get Instant Help: +234 813 292 6373

How can i trust this site?

We are well aware of fraudulent activities that have been happening on the internet. It is regrettable, but hopefully declining. However, we wish to reinstate to our esteemed clients that we are genuine and duly registered with the Corporate Affairs Commission as "PRIMEDGE TECHNOLOGY". This site runs on Secure Sockets Layer (SSL), therefore all transactions on this site are HIGHLY secure and safe!