Select Currency
Translate this page

ANALYSIS OF DATA MINING TECHNIQUES OF TELECOMMUNICATION COMPANIES IN NIGERIA: A CASE STUDY OF MTN NIGERIA

Format: MS WORD  |  Chapter: 1-5  |  Pages: 61  |  6223 Users found this project useful  |  Price NGN5,000

  DOWNLOAD THE COMPLETE PROJECT

ABSTRACT  
This study was intended to analyze data mining techniques of telecommunication companies in Nigeria. This study was guided by the following objectives; to provide an overview on data mining. To examine the various data mining techniques of telecommunication companies in Nigeria; to identify the challenges of data mining faced by telecommunication companies in Nigeria. The study employed the descriptive and explanatory design; secondary means were applied in order to collect data. Primary and Secondary data sources were used and data was analyzed using the chi-square statistical tool at 5% level of significance which was presented in frequency tables and percentage. The study findings revealed that data mining significantly impacts on the performance of telecommunication industries.            

CHAPTER ONE

INTRODUCTION
1.1     BACKGROUND TO THE STUDY
The telecommunications industry generates and stores a tremendous amount of data (Han et al, 2002). These data include call detail data, which describes the calls that traverse the telecommunication networks, network data, which describes the state of the hardware and software components in the network, and customer data, which describes the telecommunication customers (Roset et al, 1999). The amount of data is so great that manual analysis of the data is difficult, if not impossible. The need to handle such large volumes of data led to the development of knowledge-based expert systems. These automated systems performed important functions such as identifying fraudulent phone calls and identifying network faults. The problem with this approach is that it is time consuming to obtain the knowledge from human experts (the “knowledge acquisition bottleneck”) and, in many cases, the experts do not have the requisite knowledge. The advent of data mining technology promisedsolutions to these problems and for this reason the telecommunications industry was an early adopter of data mining technology (Roset et al, 1999).
Telecommunication data pose several interesting issues for data mining.The first concerns scale, since telecommunication databases may contain billions of records and are amongst the largest in the world. A second issue is that the raw data is often not suitable for data mining. For example, both call detail and network data are time-series data that represent individual events. Before this data can be effectively mined, useful “summary” features must be identified and then the data must be summarized using these features. Because many data mining applications in the telecommunications industry involve predicting very rare events, such as the failure of a network element or an instance of telephone fraud, rarity is another issue that must be dealt with. The fourth and final data mining issue concerns real-time performance because many data mining applications, such as fraud detection, requirethat any learned model/rules be applied in real-time (Ezawa& Norton, 1995). Several techniques has also been applied is tackling all these issues in telecommunication companies. Telecommunication networks are extremely complex configurations ofequipment, comprised of thousands of interconnected components. Eachnetwork element is capable of generating error and status messages, whichleads to a tremendous amount of network data. This data must be stored and analyzed in order to support network management functions, such as faultisolation. This data will minimally include a timestamp, a string thatuniquely identifies the hardware or software component generating themessage and a code that explains why the message is being generated. Forexample, such a message might indicate that “controller 7 experienced a lossof power for 30 seconds starting at 10:03 pm on Monday, May 12.” Due to the enormous number of network messages generated, technicianscannot possibly handle every message. For this reason expert systems havebeen developed to automatically analyze these messages and takeappropriate action, only involving a technician when a problem cannot beautomatically resolved (Weiss, Ros&Singhal, 1998).
This study is focused on MTN Nigeria. MTN Nigeria is part of the MTN Group, Africa's leading cellular telecommunications company. On May 16, 2001, MTN became the first GSM network to make a call following the globally lauded Nigerian GSM auction conducted by the Nigerian Communications Commission earlier in the year. Thereafter the company launched full commercial operations beginning with Lagos, Abuja and Port Harcourt.MTN paid $285m for one of four GSM licenses in Nigeria in January 2001. To date, in excess of US$1.8 billion has been invested building mobile telecommunications infrastructure in Nigeria. Since launch in August 2001, MTN has steadily deployed its services across Nigeria. It now provides services in 223 cities and towns, more than 10,000 villages and communities and a growing number of highways across the country, spanning the 36 states of the Nigeria and the Federal Capital Territory, Abuja. Many of these villages and communities are being connected to the world of telecommunications for the first time ever.  
1.2     STATEMENT OF THE PROBLEM
Fraud is a serious problem for telecommunication companies, leading to billions of dollars in lost revenue each year. Fraud can be divided into two categories: subscription fraud and superimposition fraud. Subscription fraud occurs when a customer opens an account with the intention of never paying for the account charges. Superimposition fraud involves a legitimate account with some legitimate activity, but also includes some “superimposed”illegitimate activity by a person other than the account holder.Superimposition fraud poses a bigger problem for the telecommunications industry and for this reason data mining technique is used for identifying this type of fraud. These applications should ideally operate in real-time using the call detail records and, once fraud is detected or suspected, should trigger some action. This action may be to immediately block the call and/or deactivate the account, or may involve opening an investigation, which will result in a call to the customer to verify the legitimacy of the account activity. However, this study will examine various data mining techniques of telecommunication companies in Nigeria.  
1.3     OBJECTIVES OF THE STUDY
The following are the objectives of this study:
1.     To provide an overview on data mining.
2.     To examine the various data mining techniques of telecommunication companies in Nigeria
3.     To identify the challenges of data mining faced by telecommunication companies in Nigeria
1.4     RESEARCH QUESTIONS
1.     What is data mining?
2.     What are the various data mining techniques of telecommunication companies in Nigeria?
3.     What are the challenges of data mining faced by telecommunication companies in Nigeria?
1.6     SIGNIFICANCE OF THE STUDY
The following are the significance of this study:
1.     The outcome of this study will educate on data mining techniques of telecommunication companies in Nigeria, the data mining applications and how they can be used in fraud detection.
2.     This research will be a contribution to the body of literature in the area of the effect of personality trait on student’s academic performance, thereby constituting the empirical literature for future research in the subject area.
1.7     SCOPE/LIMITATIONS OF THE STUDY
This study will cover various data mining techniques used by telecommunication companies in Nigeria.
LIMITATION OF STUDY
Financial constraint- Insufficient fund tends to impede the efficiency of the researcher in sourcing for the relevant materials, literature or information and in the process of data collection (internet, questionnaire and interview).
Time constraint- The researcher will simultaneously engage in this study with other academic work. This consequently will cut down on the time devoted for the research work.  

REFERENCES

Weiss, G. M., Ros, J, Singhal, A. ANSWER: Network monitoring using object-oriented rule. Proceedings of the Tenth Conference on Innovative Applications of Artificial Intelligence; 1087-1093. AAAI Press, Menlo Park, CA, 1998.
Ezawa, K., Norton, S. Knowledge discovery in telecommunication services data using Bayesian network models. Proceedings of the First International Conference on Knowledge Discovery and Data Mining; 1995 August 20-21. Montreal Canada. AAAI Press:
Menlo Park, CA, 1995. Han, J., Altman, R. B., Kumar, V., Mannila, H., Pregibon, D. Emerging scientific applications in data mining. Communications of the ACM 2002; 45(8): 54-58
Roset, S., Murad, U., Neumann, E., Idan, Y., Pinkas, G. Discovery of fraud rules for telecommunications—challenges and solutions.Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 409-413, San Diego CA. New York: ACM Press, 1999.

  DOWNLOAD THE COMPLETE PROJECT

ANALYSIS OF DATA MINING TECHNIQUES OF TELECOMMUNICATION COMPANIES IN NIGERIA: A CASE STUDY OF MTN NIGERIA

Not The Topic You Are Looking For?



For Quick Help Chat with Us Now!

+234 813 292 6373

+233 55 397 8005


HOW TO GET THE COMPLETE PROJECT ON ANALYSIS OF DATA MINING TECHNIQUES OF TELECOMMUNICATION COMPANIES IN NIGERIA: A CASE STUDY OF MTN NIGERIA INSTANTLY

  • Click on the Download Button above.
  • Select any option to get the complete project immediately.
  • Chat with Our Instant Help Desk on +234 813 292 6373 for further assistance.
  • All projects on our website are well researched by professionals with high level of professionalism.

Here's what our amazing customers are saying

JONNAH EHIS
Ajayi Crowther University, Oyo
I was scared at first when I saw your website but I decided to risk my last 3k and surprisingly I got my complete project in my email box instantly. This is so nice!!!
Excellent
Abubakar Iliyasu Hashim
Federal college of education pankshin affiliated to university of jos
I am highly impressed with your unquantifiable efforts for the leaners, more grace to your elbow.I will inform my colleagues about your website.
Very Good
Musa From Ahmadu Bello University
Thank you iprojectmaster for saving my life, please keep it up and may God continue to bless you people.
Excellent
Samuel From Ajayi Crowther University
You guys just made life easier for students. Thanks alot iprojectmaster.com
Excellent
Abdulrahman Jibrin
Nti Abaji
Nice one work prompt delivery tanx
Very Good
Emmanuel Essential
Kogi state University
I actually took the risk,you know first time stuff But i was suprised i received as requested. I love you guys 🌟 🌟 🌟 🌟
Very Good
Abraham Ogbanje
NATIONAL OPEN UNIVERSITY OF NIGERIA
At first I was afraid.. But I discovered they are legit. I will bring more patronize
Very Good
Gbadamosi Solomon Oluwabunmi
Lasu
Swift delivery within 9 minutes of payment. Thank you project master
Excellent
Merry From BSU
I am now a graduate because of iprojectmaster.com, God Bless you guys for me.
Excellent
Peace From Unilag
I cried not knowing how to go about my project but the day i searched online and saw iprojectmaster, i called and got my full project in less than 15minutes, i was shocked!
Excellent

FREQUENTLY ASKED QUESTIONS

How do I get this complete project on ANALYSIS OF DATA MINING TECHNIQUES OF TELECOMMUNICATION COMPANIES IN NIGERIA: A CASE STUDY OF MTN NIGERIA?

Simply click on the Download button above and follow the procedure stated.

I have a fresh topic that is not on your website. How do I go about it?

How fast can I get this complete project on ANALYSIS OF DATA MINING TECHNIQUES OF TELECOMMUNICATION COMPANIES IN NIGERIA: A CASE STUDY OF MTN NIGERIA?

Within 15 minutes if you want this exact project topic without adjustment

Is it a complete research project or just materials?

It is a Complete Research Project i.e Chapters 1-5, Abstract, Table of Contents, Full References, Questionnaires / Secondary Data

What if I want to change the case study for ANALYSIS OF DATA MINING TECHNIQUES OF TELECOMMUNICATION COMPANIES IN NIGERIA: A CASE STUDY OF MTN NIGERIA, What do i do?

Chat with Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately

How will I get my complete project?

Your Complete Project Material will be sent to your Email Address in Ms Word document format

Can I get my Complete Project through WhatsApp?

Yes! We can send your Complete Research Project to your WhatsApp Number

What if my Project Supervisor made some changes to a topic i picked from your website?

Call Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately

Do you assist students with Assignment and Project Proposal?

Yes! Call Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately

What if i do not have any project topic idea at all?

Smiles! We've Got You Covered. Chat with us on WhatsApp Now to Get Instant Help: +234 813 292 6373

How can i trust this site?

We are well aware of fraudulent activities that have been happening on the internet. It is regrettable, but hopefully declining. However, we wish to reinstate to our esteemed clients that we are genuine and duly registered with the Corporate Affairs Commission as "PRIMEDGE TECHNOLOGY". This site runs on Secure Sockets Layer (SSL), therefore all transactions on this site are HIGHLY secure and safe!