Select Currency
Translate this page

THE STUDY OF LONGITUDINAL AND LATITUDINAL VARIATION OF EQUATORIAL ELECTROJET SIGNATURE AT STATIONS WITHIN THE 96°MM AND 210°MM AFRICAN AND ASIAN SECTORS RESPECTIVELY UNDER QUIET CONDITION

Format: MS WORD  |  Chapter: 1-5  |  Pages: 66  |  3378 Users found this project useful  |  Price NGN5,000

  DOWNLOAD THE COMPLETE PROJECT

THE STUDY OF LONGITUDINAL AND LATITUDINAL VARIATION OF EQUATORIAL ELECTROJET SIGNATURE AT STATIONS WITHIN THE 96°MM AND 210°MM AFRICAN AND ASIAN SECTORS RESPECTIVELY UNDER QUIET CONDITION

 

ABSTRACT

Solar quiet current (Sq) and Equatorial Electrojet (EEJ) are two current systems which are produced by electric current in the ionosphere. The enhancement of the horizontal magnetic field is the EEJ. This research is needed for monitoring equatorial geomagnetic current which causes atmospheric instabilities and affects high frequency and satellite communication. This study presents the longitudinal and latitudinal variation of equatorial electrojet signature at stations within the 96°   210°   African and Asian sectors respectively during quiet condition. Data fromeleven observatories were used for this study. The aim of this study is to investigate the equatorial variation of the solar quite ( ) current, as well as determine the longitudinal and latitudinal magnetic signatures on the EEJ at some African and Asian sectors under quiet condition. The objectives of the study therefore are to: Determine the longitudinal and latitudinal geomagnetic field variations during solar quiet conditions along the 96° 210°  ; Investigate monthly variation and diurnal transient seasonal variation; Measure the strength of the EEJ at stations within the same longitudinal sectors of 96° 210° ; and find out the factors responsible for the longitudinal and latitudinal variation of EEJ under solar quiet condition. Horizontal ( ) component of geomagnetic field for the year 2008 from Magnetic Data Acquisition System (MAGDAS) network were used for the study. The International Quiet Days (IQDs) were used to identify quiet days. Daily baseline values for each of the geomagnetic element  , can be obtained from 0 = 1⁄2 ( 24 + 1) where 0 is the dailybaseline. The daily baseline was subtracted from the hourly values to get the hourly departure from midnight for a particular day = − 0 where = 1 24 gives the measure of the hourly amplitude of the variation of . The monthly average of the diurnal variation was found. The seasonal variation of was found by averaging the monthly means for Lloyd’s season. Results showed that: The longitudinal and latitudinal variation in the differs in magnitude from one station to another within the same longitude due to the difference in the influence of the EEJ on them, which depends on how far from or near (latitudinal difference) they are to the EEJ band (confined within ±3°) wherein the EEJ current flows eastwards; The highest monthly longitudinal variation of EEJ is 92 at DAV and TIR during September equinox. This high amplitude at DAV andTIR compared with the other 9 stations, showed the presence of higher electric current (equatorial electrojet) in the ionosphere flowing over DAV and TIR. Thus the high magnitude could possibly be due to a greater width of the electrojet over thestations. The variation pattern for daily, monthly and seasonal variation were found to be similar; The magnitude of EEJ strength at stations within the same specified longitude differ where the EEJ strength at ILR is maximum with of 55 at about 1100 LT and maximum EEJ strength at DAV is 93 at about 1200LTwhich is the highest for the specified year; The possible factors responsible for the variation of EEJ is seen to be the ionospheric processes and physical structure such as wind and conductivity. The value peaks between 1000LT and 0200 LT for all the plots and varies with longitude and with latitude. The EEJ value for equinoctial months is seen to be higher than those of solstice months where the buildup flank is steeper in the morning hours than in the evening hours.

 

CHAPTER ONE

INTRODUCTION

1.1         Background to Study

The Earth's atmosphere is roughly 78 percent nitrogen, 21 percent oxygen, with trace amounts of water, argon, carbon dioxide and other gases. Nowhere else in the solar system can one find an atmosphere loaded with free oxygen, which ultimately proved vital to one of the other unique features of the Earth. The air surrounds the Earth and becomes thinner farther from the surface. Roughly 160 km above the Earth, the air is so thin that satellites can zip through with little resistance. Still, traces of atmosphere can be found as high as 600 km above the surface.

1.1.1 Classification of the Earth’s Atmosphere The earth’s atmosphere is generally divided into two broad sections namely; the lower and the upper atmosphere. The lower atmosphere starts from the surface of the earth and extends to about 40-50 km above the earth, depending on the latitude. The parameter of this region are what the meteorologists use in predicting atmospheric weather conditions. The earth’s upper atmosphere (ionosphere) starts from about 50 km above the earth and extends to about 600 km. This region is electrically conducting because of the partially ionized plasma that is produced by photo-ionization and this leads to the variation in the ionization level of the ionosphere. These variations can be regular and irregular. The atmosphere can be divided into layers based on its temperature. On the basis of temperature nomenclature; it can be divided into five layers or regions which are: troposphere, stratosphere, mesosphere, thermosphere and exosphere (Figure1.1). In terms of level of ionization, it can be divided into neutrosphere, ionosphere and protonosphere.

Troposphere

The troposphere is the lowest layer of Earth's atmosphere and site of all weather on Earth (Figure 1.1). The troposphere is bonded on the top by a layer of air called the tropopause, which separates the troposphere from the stratosphere, and on bottom by the surface of the Earth. The troposphere is wider at the equator 16 km than at the poles 8 km and contains 75 percent of atmosphere's mass. Temperature and water vapor content in the troposphere decreases rapidly with altitude and the troposphere contains 99% of the water vapor in the atmosphere, it is in this layer that weather change phenomena takes place because water vapor plays a major role in regulating air temperature, due to its (Troposphere layer’s) ability for the absorption of solar energy and thermal radiation from the planet's surface. As sunlight enters the atmosphere, a portion is immediately reflected back to space, but the rest penetrates the atmosphere and is absorbed by the earth's surface. This energy is then remitted by the earth back into atmosphere as long-wave radiation. Carbon dioxide and water molecules absorb this energy and emit much of it back towards the earth again which helps to keep the average global temperature from changing drastically from year to year.

  DOWNLOAD THE COMPLETE PROJECT

THE STUDY OF LONGITUDINAL AND LATITUDINAL VARIATION OF EQUATORIAL ELECTROJET SIGNATURE AT STATIONS WITHIN THE 96°MM AND 210°MM AFRICAN AND ASIAN SECTORS RESPECTIVELY UNDER QUIET CONDITION

Not The Topic You Are Looking For?



For Quick Help Chat with Us Now!

+234 813 292 6373

+233 55 397 8005


HOW TO GET THE COMPLETE PROJECT ON THE STUDY OF LONGITUDINAL AND LATITUDINAL VARIATION OF EQUATORIAL ELECTROJET SIGNATURE AT STATIONS WITHIN THE 96°MM AND 210°MM AFRICAN AND ASIAN SECTORS RESPECTIVELY UNDER QUIET CONDITION INSTANTLY

  • Click on the Download Button above.
  • Select any option to get the complete project immediately.
  • Chat with Our Instant Help Desk on +234 813 292 6373 for further assistance.
  • All projects on our website are well researched by professionals with high level of professionalism.

Here's what our amazing customers are saying

Emmanuel Essential
Kogi state University
I actually took the risk,you know first time stuff But i was suprised i received as requested. I love you guys 🌟 🌟 🌟 🌟
Very Good
Ibrahim Muhammad Muhammad
Usmanu danfodiyo university, sokoto
It's a site that give researcher student's to gain access work,easier,affordable and understandable. I appreciate the iproject master teams for making my project work fast and available .I will surely,recommend this site to my friends.thanks a lot..!
Excellent
Adam Alhassan Yakubu
UDS
Excellent work and delivery , I promise to share my testimonies everyone in need of this kind of work. You're the best
Excellent
Gbadamosi Solomon Oluwabunmi
Lasu
Swift delivery within 9 minutes of payment. Thank you project master
Excellent
JONNAH EHIS
Ajayi Crowther University, Oyo
I was scared at first when I saw your website but I decided to risk my last 3k and surprisingly I got my complete project in my email box instantly. This is so nice!!!
Excellent
Dau Mohammed Kabiru
Kaduna State College of Education Gidan Waya
This is my first time..Your service is superb. But because I was pressed for time, I became jittery when I did not receive feedbackd. I will do more business with you and I will recommend you to my friends. Thank you.
Very Good
Abdulrahman Jibrin
Nti Abaji
Nice one work prompt delivery tanx
Very Good
Abraham Ogbanje
NATIONAL OPEN UNIVERSITY OF NIGERIA
At first I was afraid.. But I discovered they are legit. I will bring more patronize
Very Good
Joseph M. Yohanna
Thanks a lot, am really grateful and will surely tell my friends about your website.
Excellent
Oluchi From Michael Opara University
If you are a student and you have not used iprojectmaster materials, you are missing big time! iprojectmaster is the BEST
Excellent

FREQUENTLY ASKED QUESTIONS

How do I get this complete project on THE STUDY OF LONGITUDINAL AND LATITUDINAL VARIATION OF EQUATORIAL ELECTROJET SIGNATURE AT STATIONS WITHIN THE 96°MM AND 210°MM AFRICAN AND ASIAN SECTORS RESPECTIVELY UNDER QUIET CONDITION?

Simply click on the Download button above and follow the procedure stated.

I have a fresh topic that is not on your website. How do I go about it?

How fast can I get this complete project on THE STUDY OF LONGITUDINAL AND LATITUDINAL VARIATION OF EQUATORIAL ELECTROJET SIGNATURE AT STATIONS WITHIN THE 96°MM AND 210°MM AFRICAN AND ASIAN SECTORS RESPECTIVELY UNDER QUIET CONDITION?

Within 15 minutes if you want this exact project topic without adjustment

Is it a complete research project or just materials?

It is a Complete Research Project i.e Chapters 1-5, Abstract, Table of Contents, Full References, Questionnaires / Secondary Data

What if I want to change the case study for THE STUDY OF LONGITUDINAL AND LATITUDINAL VARIATION OF EQUATORIAL ELECTROJET SIGNATURE AT STATIONS WITHIN THE 96°MM AND 210°MM AFRICAN AND ASIAN SECTORS RESPECTIVELY UNDER QUIET CONDITION, What do i do?

Chat with Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately

How will I get my complete project?

Your Complete Project Material will be sent to your Email Address in Ms Word document format

Can I get my Complete Project through WhatsApp?

Yes! We can send your Complete Research Project to your WhatsApp Number

What if my Project Supervisor made some changes to a topic i picked from your website?

Call Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately

Do you assist students with Assignment and Project Proposal?

Yes! Call Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately

What if i do not have any project topic idea at all?

Smiles! We've Got You Covered. Chat with us on WhatsApp Now to Get Instant Help: +234 813 292 6373

How can i trust this site?

We are well aware of fraudulent activities that have been happening on the internet. It is regrettable, but hopefully declining. However, we wish to reinstate to our esteemed clients that we are genuine and duly registered with the Corporate Affairs Commission as "PRIMEDGE TECHNOLOGY". This site runs on Secure Sockets Layer (SSL), therefore all transactions on this site are HIGHLY secure and safe!