Select Currency
Translate this page


Format: MS WORD  |  Chapter: 1-5  |  Pages: 75  |  2380 Users found this project useful  |  Price NGN3,000




Brief Review on Mathieu Equation

Mathieu equation is a special case of a linear second order homogeneous differential equation (Ruby1995). The equation was first discussed in 1868, by Emile Leonard Mathieu in connection with problem of vibrations in elliptical membrane. He developed the leading terms of the series solution known as Mathieu function of the elliptical membranes. A decade later, He defined the periodic Mathieu Angular functions of integer order as Fourier cosine and sine series; furthermore, without evaluating the corresponding coefficient, He obtained a transcendental equation for characteristic numbers expressed in terms of infinite continued fractions; and also showed that one set of periodic functions of integer order could be in a series of Bessel function (Chaos-CadorandLey-Koo2002). In the early1880’s, Floquet went further to publish a theory and thus a solution to the Mathieu differential equation; his work was named after him as, ‘Floquet’s Theorem’ or ‘Floquet’s Solution’. Stephenson used an approximate Mathieu equation, and proved, that it is possible to stabilize the upper position of a rigid pendulum by vibrating its pivot point vertically at a specific high frequency. (Stépán and Insperger 2003). There exists an extensive literature on these equations; and in particular, a well-high exhaustive compendium was given by Mc-Lachlan (1947). TheMathieufunctionwasfurtherinvestigatedbynumberofresearcherswho found a considerable amount of mathematical results that were collected more than 60 years ago by Mc-Lachlan (Gutiérrez-Vegaaetal2002).Whittaker and other scientist derived in1900s derived the higher-order terms of the Mathieu differential equation. A variety of the equation exist in text book written by Abramowitz and Stegun (1964) Mathieu differential equation occurs in two main categories of physical problems. First, applications involving elliptical geometries such as, analysis of vibrating modes. In ellipticm embrane, the propagating modes of elliptic pipes and the oscillations of water in a lake of elliptic shape. Mathieu equation arises after separating the wave equation using elliptic coordinates. Secondly, problems involving periodic motion examples are, the trajectory of an electron in a periodic array of atoms, the mechanics of the quantum pendulum and the oscillation of floating vessels.
The canonical form for the Mathieu differential equation is given by
+ y =0, (1.1)
dy 2
dx2 [a-2qcos(2x)](x)
where a and qarereal constants known as the characteristic value and parameter respectively.
Closely related to the Mathieu differential equation is the Modified Mathieu Differential equation given by:
- y =0, (1.2) dy 2 du2 [a-2qcosh (2u)](u)
where u=ixis substituted in to equation(1.1).
The substitution of t=cos(x)in the canonical Mathieu differential equation(1.1)
Above transforms the equation into its algebraic form as given below:
(1-t) -t + y =0. (1.3) 2 dy 2
This has two singularities at=1,-1andoneir regulars ingularity at infinity, which implies that in general (unlike many other special functions), the solution of  Mathieu differential equation cannot be expressed in terms of hyper geometric functions (Mritunjay2011).

Purpose of the Study

The purpose of the study is to facilitate the understanding of some of the properties of Mathieu functions and their applications. We believe that this study will be helpful in achieving a better comprehension of their basic characteristics. This study is also intended to enlighten students and researchers who are unfamiliar with Mathieu functions. In the chapter two of this work, we discussed the Mathieu 3 Differential equation and how it arises from the elliptical coordinate system. Also, we talked about the Modified Mathieu differential equation and the Mathieu differential equation algebraic form. The chapter three was based on the solutions to the Mathieu equation known as Mathieu functions and also the Floquet’s theory. In the chapter four, we showed how Mathieu functions can be applied to describe the inverted pendulum, elliptic drum head, Radio frequency quadrupole, Frequency modulation, Stability of a floating body, Alternating Gradient Focusing, the Paul trap for charged particles and the Quantum Pendulum.


Not What You Are Looking For?

For Quick Help Chat with Us Now!

+234 814 010 7220

+233 541 351 187

Here's what our amazing customers are saying

Emmanuel Essential
Kogi state University
I actually took the risk,you know first time stuff But i was suprised i received as requested. I love you guys 🌟 🌟 🌟 🌟
Very Good
Azeez Abiodun
Moshood Abiola polytechnic
I actually googled and saw about iproject master, copied the number and contacted them through WhatsApp to ask for the availability of the material and to my luck they have it. So there was a delay with the project due to the covid19 pandemic. I was really scared before making the payment cause I’ve been scammed twice, they attended so well to me and that made me trust the process and made the payment and provided them with proof, I got my material in less than 10minutes
Very Good
Gbadamosi Solomon Oluwabunmi
Swift delivery within 9 minutes of payment. Thank you project master
Ajayi Crowther University, Oyo
I was scared at first when I saw your website but I decided to risk my last 3k and surprisingly I got my complete project in my email box instantly. This is so nice!!!
Ahmadu Bello University
I wish I knew you guys when I wrote my first degree project, it took so much time and effort then. Now, with just a click of a button, I got my complete project in less than 15 minutes. You guys are too amazing!
Temitayo Ayodele
Obafemi Awolowo University
My friend told me about iprojectmaster website, I doubted her until I saw her download her full project instantly, I tried mine too and got it instantly, right now, am telling everyone in my school about, no one has to suffer any more writing their project. Thank you for making life easy for me and my fellow students... Keep up the good work
Very Good
Stancy M
Abia State University, Uturu
I did not see my project topic on your website so I decided to call your customer care number, the attention I got was epic! I got help from the beginning to the end of my project in just 3 days, they even taught me how to defend my project and I got a 'B' at the end. Thank you so much iprojectmaster, infact, I owe my graduating well today to you guys...
Ibrahim Muhammad Muhammad
Usmanu danfodiyo university, sokoto
It's a site that give researcher student's to gain access work,easier,affordable and understandable. I appreciate the iproject master teams for making my project work fast and available .I will surely,recommend this site to my friends.thanks a lot..!
Dau Mohammed Kabiru
Kaduna State College of Education Gidan Waya
This is my first time..Your service is superb. But because I was pressed for time, I became jittery when I did not receive feedbackd. I will do more business with you and I will recommend you to my friends. Thank you.
Very Good
Joseph M. Yohanna
Thanks a lot, am really grateful and will surely tell my friends about your website.


  • Select 3 Project Topics of your choice from your Department.
  • Submit the 3 topics to your Supervisor for Approval.
  • Call Our Instant Help Desk on +234 814 010 7220 and Get Your Complete Project Material Instantly.
  • All project materials on this website are well researched by professionals with high level of professionalism.


How do i choose a Project Topic?

Look for your department and select any topic of your choice

I have a fresh topic that is not on your website. How do I go about it?

How fast can i get a complete project from your website?

Within 15 minutes if the exact project topic is on our website

Is it a complete research project or just materials?

It is a Complete Research Project i.e Chapters 1-5, Abstract, Table of Contents, Full References, Questionnaires / Secondary Data

One of your topics suites my project, but the case study is different. What do i do?

Call Our Instant Help Desk Now: +234 814 010 7220 and you will be responded to immediately

How do i get my complete project?

Your Complete Project Material will be sent to your Email Address in Ms Word document format

Can I get my Complete Project through WhatsApp?

Yes! We can send your Complete Research Project to your WhatsApp Number

What if my Project Supervisor made some changes to a topic i picked from your website?

Call Our Instant Help Desk Now: +234 814 010 7220 and you will be responded to immediately

Do you assist students with Assignment and Project Proposal?

Yes! Call Our Instant Help Desk Now: +234 814 010 7220 and you will be responded to immediately

What if i do not have any project topic idea at all?

Smiles! We've Got You Covered. Chat with us on WhatsApp Now to Get Instant Help: +234 814 010 7220

How can i trust this site?

We are well aware of fraudulent activities that have been happening on the internet. It is regrettable, but hopefully declining. However, we wish to reinstate to our esteemed clients that we are genuine and duly registered with the Corporate Affairs Commission as "PRIMEDGE TECHNOLOGY". This site runs on Secure Sockets Layer (SSL), therefore all transactions on this site are HIGHLY secure and safe!